Témakör:
Teljesítményelektronikai ötletek – 8
Megjelent: 2011. október 25.
A teljesítményelektronikáról szólva nem kerülhetjük meg a félvezetőkben keletkező veszteségi hő elvezetésének kérdését. A „hasra ütéses” hőtechnikai tervezés – ha túlméretezünk – értelmetlenül növeli a készülék tömegét, méretét és nem utolsósorban az önköltségi árát. Ha viszont alultervezünk, a megbízhatóság szenvedi meg a tervezői lustaságot. Érdemesebb a teljesítményelektronikai sorozatunk e havi folytatásában bemutatott számítási módszerekhez hasonló gondolatmenetet követve minimalizálni a termikus tervezés során elkövethető tévedéseket.
A felületszerelt félvezetők hőmérséklet-emelkedésének becslése
Egy félvezető alkatrész üzem közbeni felmelegedésének becslése rendszerint elég egyszerű feladat. Ki kell számítani az alkatrész által disszipált hőteljesítményt, és a felhasznált hűtőeszközök hőáramlásának elektromos analógiáját felhasználva meghatározhatjuk, milyen hűtési megoldást kell választanunk. Manapság viszont a probléma annyiban lett bonyolultabb, hogy a gyártási költségekre vonatkozó megfontolások erős nyomást gyakorolnak a tervezőre, hogy a hűtőbordák elhagyásával csökkentse a méretet és az árat. A teljesítmény-félvezetőknél elterjedt az olyan tokozás, amely megerősített hőelvezetéssel vezeti el a félvezető csipen disszipált hőt. Ez azonban azt kívánja meg, hogy a hordozó nyomtatott áramköri lap vezesse el a csip belsejéből távozó hőt. Az 1. ábrán azt láthatjuk, milyen útvonalakon jut el egy fém hőelvezető rögzítőfüllel ellátott félvezetőből a disszipált hő a nyomtatott áramköri (NyÁK) lap jó hővezető fémrétegeihez. A hő ezután a fémfóliákon szétterjed a NyÁK-lapon, és annak felületén konvektív hőátadással kerül a környező levegőbe. A félvezető csip réteghőmérsékletének emelkedését eszerint két tényező befolyásolja: először az a rézmennyiség, amely részt vesz a hő elszállításában, másodszor pedig az a felület, amely a konvekciós hőátadás rendelkezésére áll.
1. ábra A hővezetés útvonalai a félvezető lapkától a környezetig
A félvezetők adatlapjai rendszerint megadják a félvezető rétegtől a környezetig vezető hőtovábbító közegnek a termikus ellenállását egy bizonyos nyomtatott áramköri konfiguráció esetére. Ez esetben a tervezőnek egyszerűen csak meg kell szoroznia a félvezetőben felszabaduló hőteljesítmény értékét a termikus ellenállással – az eredmény a félvezető réteg hőmérsékletének megemelkedése a környezeti hőmérséklethez képest. Rögtön nem ilyen egyszerű azonban a helyzet, ha a specifikációban szereplő konfigurációt nem lehet megvalósítani, vagy ha az ott megadott értéknél is kisebb termikus ellenállásra van szükség.
A 2. ábra a hőáramlási problémának egy elektromos analógiára épülő egyszerűsített helyettesítő képet mutatja, amely további megfontolásokra ad lehetőséget. Az analógia szerint az integrált áramkör belsejében keletkező hőteljesítménynek a modellbeli generátor árama felel meg, míg az ellenállások a termikus ellenállást modellezik. Az ezen áramkörből kiszámolható feszültség pedig a hőmérsékletnek felel meg. Eszerint a félvezető réteg és a toknak a NyÁK-kal érintkező felülete között van egy soros termikus ellenállás, amelyből egy többlépcsős osztóra jut a kiáramló hő. Egy-egy osztófokozat a hőteljesítményt részben a következő fokozatra, részben pedig közvetlenül a környezetbe vezeti el. Ez a modell azzal az előfeltétellel él, hogy
-
a kártya függőlegesen helyezkedik el, továbbá
-
nincs mesterséges (forszírozott) léghűtés vagy sugárzásos hőleadó felület, tehát az összes hő a NyÁK-lap rézvezetőin átáramolva távozik és végül
-
kicsiny a hőmérséklet-különbség a NyÁK-lap két oldala között.
2. ábra A hőmérséklet-növekedés számításához használt egyszerűsített elektromos helyettesítő kép
A 3. ábra azt a hatást szemlélteti, hogyan befolyásolja a NyÁK-lapon a hűtésre hatással levő réz mennyisége a hőellenállás értékét. Háromszoros javulás érhető el például, ha az 1,4 mil (35 µm) rétegvastagságú „félunciás”, kétoldalas NyÁK-lap helyett 8,4 mil (213 µm) rétegvastagságú, „1,5 unciás” négyrétegű NyÁK-lapot használunk. Az ábrán két görbe látszik: az egyik egy kisméretű tokra vonatkozik, amelynél a hőáramlás a kártya felé egy 5 mm átmérőjű folton át történik, a másik egy nagyobb méretű, 10 mm átmérőjű hőáramlási folttal jellemezhető tok viselkedését mutatja. Mindkét esetben kb. 60 cm2 hűtő NyÁK-felületet tételeztünk fel. Ezek az adatok jó egyezést mutatnak a számított értékekkel, és alkalmasak arra, hogy becslést adjunk a NyÁK-lap szerkezetének a hőtechnikai tulajdonságokra gyakorolt hatásáról. Ám legyünk nagyon óvatosak ennek az információnak a felhasználásánál! A görbék csak azzal a feltételezéssel igazak, hogy a 60 cm2 hűtő rézfelületen belül nincs más hőforrás. Az ugyanis alaposan megváltoztathatja a helyzetet.
3. ábra Vastagabb rézfóliát tartalmazó NyÁK-lapot hsználva a réteghőmérséklet jelentősen csökken
A folytatásban a terhelések tranziens viselkedésével foglalkozunk.
Irodalom:
[1] „Power Supply Layout Considerations”, R. Kollman, TI Unitrode Power Supply Seminar, SEM1600, Topic 4, 2004-5: http://focus.ti.com/docs/training/catalog/events/event.jhtml?sku=SEM405006
[2] „Power Pad Thermally Enhanced Package – SLMA002D”, Steven Kummerl, Texas Instruments, October 2008: http://focus.ti.com/general/docs/techdocsabstract.tsp?abstractName=slma002d
www.power.ti.com
http://www.ti.com/ww/hu/cikkek-szakirodalom.html
A cikksorozat korábbi részei:
1. rész |
2. rész |
3. rész |
4. rész |
5. rész |
6. rész |
7. rész |
|
|
|